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SUMMARY

The goal of this study is to evaluate the effect of mass lumping on the dispersion properties of four finite-
element velocity/surface-elevation pairs that are used to approximate the linear shallow-water equations.
For each pair, the dispersion relation, obtained using the mass lumping technique, is computed and
analysed for both gravity and Rossby waves. The dispersion relations are compared with those obtained
for the consistent schemes (without lumping) and the continuous case. The P0−P1, RT 0 and PNC

1 −P1
pairs are shown to preserve good dispersive properties when the mass matrix is lumped. Test problems to
simulate fast gravity and slow Rossby waves are in good agreement with the analytical results. Copyright
q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The shallow-water (SW) equations are the simplest geophysical flow model allowing the existence
of fast gravity and slow Rossby waves. These equations can be derived from the Navier–Stokes
equations expressed in a rotating frame of reference by integrating them over the depth of the fluid
layer and assuming a small aspect ratio. Owing to their inherent simplicity, while still retaining
some of the main driving forces of geophysical flows, the SW equations are often used as a
benchmark for numerical schemes to be used in more complex oceanic or atmospheric models.
The simulation of gravity waves allows one to assess the model’s ability to represent phenomena
such as tsunamis or mountain waves. On a larger scale, slow Rossby waves play an important role
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in the global circulation of both the atmosphere and the ocean, and thus on climate as a whole.
Any model designed for climatic applications should simulate them accurately.

The finite-element (FE) method is one of the many numerical methods available to solve
the SW equations [1–7]. Its main advantage lies in the possibility of discretizing the equations
on unstructured meshes. Such meshes offer the enhanced flexibility of variable resolution and
elements’ shape and orientation for representing localized phenomena in complex domains. One of
the disadvantages of the method is that the Galerkin formulation usually introduces a non-diagonal
mass matrix that multiplies the temporal derivative of the space-discretized solution. The solution
of the discrete system of algebraic equations therefore requires the inversion of that non-diagonal
mass matrix regardless of the time integration scheme. This means that even an explicit time
integration scheme usually requires the use of a linear solver to obtain the solution at each time
step. As a result, the computational cost of an explicit FE model is usually much higher than the
one of an equivalent finite-difference model.

The so-called mass lumping technique has been introduced to improve FE schemes’ efficiency by
diagonalizing the mass matrix. Two techniques have been suggested to perform that diagonalization.
The first one amounts to add the off-diagonal elements to the diagonal elements of the consistent
mass matrix so that the total ‘mass’ associated with a node is conserved [8]. Another approach,
suggested by Fried and Malkus [9], amounts to use an inexact numerical integration rule where
integration nodes coincide with the nodes of the element. Since all but one shape function are zero
at a given node, the resulting mass matrix is diagonal.

In ocean and atmosphere FE models, the mass lumping procedure is often used to improve the
efficiency of the model and to achieve computational performances comparable to those of finite-
difference models. The impact of this procedure on the model accuracy has not been thoroughly
investigated yet with the exception of some early work by Foreman [10]. In this study, we aim
to focus on the dispersion properties of several lumped FE schemes for both gravity and Rossby
waves. This work builds upon recent studies by Le Roux et al. [11–15], which have compared the
dispersion relations of a number of low-order FE models of the SW equations. They have shown
that the coupling between the discrete momentum and continuity equations could lead to some
serious phase and group velocity errors for both gravity and Rossby waves. Only a few FE schemes
are able to maintain good accuracy and thus appear to be suitable for geophysical applications.
The effect of mass lumping on the accuracy of four FE pairs is investigated in the present study.

The outline of the paper is the following. The model equations and free modes are presented
in Section 2. The spatial discretization follows in Section 3. In Section 4, the computation of
the lumped dispersion relations are performed for the four FE pairs for both gravity and Rossby
waves. These dispersion relations are compared analytically and graphically with the continuous
case in Section 5. The dispersion analysis is followed by two numerical tests in Section 6. Some
concluding remarks complete the study.

2. GOVERNING EQUATIONS AND FREE MODES

The inviscid linear SW equations are expressed in Cartesian coordinates [16] as
ūt + f k×ū+g∇�̄=0 (1)

�̄t +H∇ · ū=0 (2)
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where ū=(ū, v̄) is the velocity field, �̄ is the surface elevation with respect to the reference level
z=0, g and f are the gravitational acceleration and Coriolis parameter, respectively; k is a unit
vector in the vertical direction and the mean depth H is assumed constant. For a contained flow,
(1) and (2) are solved subject to the no-normal flow boundary condition ū ·n=0 on the boundary
� of the domain �, where n is the outward pointing normal on �. We now examine the free modes
of (1) and (2) corresponding to inertia-gravity and Rossby waves.

2.1. Inertia-gravity waves

For this analysis we seek periodic solutions of (1)–(2) of the form

ū(x, y, t)=u(x, y)e−i�t , �̄(x, y, t)=�(x, y)e−i�t (3)

where u=(u,v) and � are amplitudes, and � is the angular frequency. Equations (1) and (2) then
reduce to

−i�u+ f k×u+g∇�=0 (4)

−i��+H∇ ·u=0 (5)

The free modes of (4)–(5) are examined by perturbing about the basic state u=v=�=0. Because
the governing equations are linear, the solution may be examined by considering the behaviour
of one Fourier mode. We then seek solutions of (4)–(5) of the form (u,v,�)=(ũ, ṽ, �̃)ei(kx+ly),
where k and l are the wave numbers in the x- and y-directions, respectively. Substitution into
(4)–(5) leads to a square matrix system for the amplitudes ũ, ṽ, �̃. For a non-trivial solution to
exist, the determinant of the matrix must equal zero, and this leads to the so-called dispersion
relation for the frequency

�(�2− f 2−gH(k2+l2))=0 (6)

The first solution �=0 is the geostrophic mode, while the other two solutions

�G
AN=±

√
f 2+gH(k2+l2) (7)

correspond to the free-surface gravitational modes with rotational correction. Since � is purely
real, all modes are neutrally stable and neither amplify nor decay.

2.2. Rossby waves

Here, we do not neglect the Coriolis force and the �-plane approximation, f = f0+�y, is used [17].
As for the gravity waves we seek periodic solutions and we obtain

−i�u+( f0+�y)k×u+g∇�=0 (8)

−i��+H∇ ·u=0 (9)

Equations (8) and (9) will govern the planetary wave motion due to the variation in the Coriolis
parameter with latitude. In (8) and (9), the larger terms ( f0,g and H ) govern the steady geostrophic
dynamics, whereas the smaller ones (the time derivatives and the � term) may be considered as
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perturbations and, although small, govern the wave evolution. In the first approximation, the large
terms dominate and the motion is called geostrophic. From (8) we obtain

u� g

f0
rot� (10)

with rot�≡(−�y,�x ). Using (10) in the small terms of (8) yields

−i�
g

f0
rot�+ f0k×u+ g

f0
�yk×rot�+g∇�=0 (11)

and we deduce

u= g

f0
rot�+ i�

g

f 20
∇�− g

f 20
�y rot� (12)

In the right-hand side of (12) the first term is identified as the geostrophic velocity and the next and
small terms represent the ageostrophic motion. Final substitution of u from (12) in the continuity
equation (9) leads to a linear equation with constant coefficients

i�(�−�2∇2�)+��2�x =0 (13)

where �≡√
gH/ f0 is the deformation radius. We then seek solutions of the form �= �̃ei(kx+ly)

and their substitution into (13) leads to the so-called dispersion relation for the frequency

�R
AN= −�k

�−2+k2+l2
(14)

The relation (14) may be viewed as a particular case of the Longuet-Higgins approach [18] and
has been introduced by Wentzel in [19].

3. SPATIAL DISCRETIZATION

3.1. The weak formulation

3.1.1. Inertia-gravity waves. We assume that u and � belong to either the square-integrable space
L2(�) or the Sobolev space H1(�), i.e. the space of functions in L2(�) whose first derivatives
belong to L2(�). The weak formulation of (4) and (5) requires the test functions u (whose x-
or y-component is formally denoted by �) and � to be sufficiently regular and to, respectively,
belong to the same function space as u and �, such that

−i�
∫

�
u·ud�+

∫
�
f (k×u) ·ud�+g

∫
�

∇�·ud�=0 (15)

−i�
∫

�
��d�+H

∫
�

∇ ·u�d�=0 (16)

where d� is the area element.
Depending on the regularity of u and �, the terms containing derivatives in (15) and (16) may

be integrated by parts using Green’s theorem. In that case, (15) can be rewritten as

i�
∫

�
u·ud�−

∫
�
f (k×u) ·ud�+g

∫
�

�∇ ·ud�=0 (17)
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and for (16) we obtain

i�
∫

�
��d�+H

∫
�
u·∇�d�=0 (18)

by letting u·n=0 (and u ·n=0) on �.

3.1.2. Rossby waves. The weak formulation of (12) and (9) leads to∫
�
u·ud�= g

f0

∫
�
rot�·ud�+ i�

g

f 20

∫
�

∇�·ud�− g�

f 20

∫
�
y rot�·ud� (19)

−i�
∫

�
��d�+H

∫
�

∇ ·u�d�=0 (20)

Depending on the regularity of u and �, the terms containing derivatives in (19) and (20) may be
integrated by parts using Green’s theorem. In that case, (19) can be rewritten as∫

�
u·ud�=− g

f0

∫
�

� rotud�− i�
g

f 20

∫
�

�∇ ·ud�+ g�

f 20

∫
�

� rot(yu)d� (21)

by letting u·n=0 on � and rotu≡vx −uy . For (20) we obtain

i�
∫

�
��d�+H

∫
�
u·∇�d�=0 (22)

3.2. Galerkin FE discretization

The Galerkin FE method approximates the solution of (15)–(16) and (19)–(20), and eventually
(17)–(18) and (21)–(22) if integration by parts needs to be performed, in finite-dimensional
subspaces. Let us consider a FE triangulation Th of the polygonal domain �, where h is a repre-
sentative meshlength parameter that measures resolution. For a triangle K ∈Th , let Ps(K ) denote
the space of polynomials of degree s on K . The discrete solutions uh and �h belong to finite-
dimensional spaces whose restrictions on K belong to Pq(K )×Pq(K ) for uh and to Pr (K ) for
�h . The components of uh and �h are represented over K by interpolating functions. Introducing
the FE basis leads to a FE statement as in (15)–(16) and (19)–(20), and eventually in (17)–(18)
and (21)–(22), but with u,� replaced by the FE trial functions uh,�h and �,� replaced by the
corresponding FE test functions.

3.3. The FE pairs

Four candidate FE pairs for representing velocity and surface elevation are described and evaluated
in the remainder of this study. In Figure 1, velocity and surface-elevation node locations are
represented by the symbols � and ©, respectively, for the pairs. The black arrows indicate the
location of normal velocity nodes, and the arrow points in the direction of the chosen normal.
The conventional nomenclature Pq −Pr means that velocity and surface elevation are, respectively,
represented as piecewise-defined polynomials of degree q and r . Enhancements of this basic
terminology are introduced as needed.

The RT0 element, also called low-order Raviart–Thomas element [20], has a discontinuous
piecewise-constant representation of surface elevation. It is based on flux conservation on element
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Figure 1. Velocity and surface-elevation node locations are represented by the symbols � and ©, respec-
tively, for the (a) P0−P1, (b) RT0, (c) PNC

1 −P1, and (d) P1 iso P2−P1 pairs. The black arrows indicate
the location of normal velocity nodes, and the arrow points in the direction of the chosen normal. The

capital letters refer to the typical velocity and elevation nodes used in Section 4.

edges and has normal velocity components at triangle edge midpoints. Equations (16) and (17) are
used to compute the inertia-gravity waves and the Rossby modes are obtained from (20) and (21).
Common to the remaining FE velocity/surface-elevation pairs is a piecewise-linear continuous
representation of surface elevation and they differ from one another in their representation of
velocity. The PNC

1 −P1 pair [12, 21] has velocity nodes at triangle edge midpoints and linear
basis functions are used to approximate the two velocity components on the element’s two-
triangle support. Such a representation is only continuous across triangle boundaries at midpoint
nodes, and discontinuous everywhere else around a triangle boundary. As a consequence of the
orthogonality property of the linear PNC

1 basis functions, the velocity mass matrix is ‘naturally’
diagonal. The P1 iso P2−P1 element pair [22] has piecewise-linear basis functions for velocity
on a refined triangulation obtained by dividing each triangle into four subtriangles using triangle
edge midpoints. There are thus six velocity nodes over each unrefined triangle, the same as for
a quadratic approximation of velocity, termed P2. Finally, the P0−P1 pair [13, 14, 23] has a
piecewise-constant representation of velocity. For both the PNC

1 −P1 and P0−P1 pairs, Equations
(15) and (18) are employed to compute the inertia-gravity waves and the Rossby modes are obtained
from (19) and (22).

4. COMPUTATION OF THE LUMPED DISPERSION RELATIONS

In the remainder of this study we analyse the impact of the so-called mass lumping technique on
the dispersion relation for both gravity and Rossby waves using the four FE schemes described
above. In order to compute the dispersion relation we follow the same procedure as in Section 2
for the continuous case, but at the discrete level. The resulting discrete momentum and continuity
equations (and dispersion relations) are obtained in [13, 15] for the gravity waves and in [14]
for the Rossby waves, without the use of mass lumping techniques. For the Rossby waves only
the P0−P1 and PNC

1 −P1 pairs are considered in [14] because the velocity mass matrix needs
to be diagonal in order to be able to substitute the velocity nodal values from (19) in (20), or
from (21) in (22) when integration by parts is performed. This is why only FE pairs leading to
‘naturally’ diagonal mass matrices have been considered in [14]. In this study, in addition to the
pairs examined in [14] for the Rossby waves, we also consider the RT0 and P1 iso P2−P1 pairs,
via the mass lumping technique.
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For each pair, the discrete momentum and continuity equations are first obtained from the stencils
of Figures 3.1, 3.2 and 3.5 in [13] and Figures 4 and 5 in [15]. The mass lumping procedure is
then employed for both the velocity and elevation mass matrices.

For the P0−P1 and PNC
1 −P1 pairs, the velocity mass matrices are ‘naturally’ diagonal. This

is due to the orthogonality property of the non-conforming basis functions for the latter pair, as
mentioned in Section 3.3. Consequently, the lumping procedure only needs to be performed for
the P1 elevation mass matrix for these pairs. For the P1 iso P2−P1 pair, both the P1 velocity
and elevation mass matrices are lumped, and the lumping technique is applied on the refined
triangulation for the velocity mass matrix. Two techniques are usually used to perform the mass
lumping procedure for the P1 element. The first approach consists in adding the off-diagonal
elements to the diagonal elements of the consistent mass matrix so that the total ‘mass’ associated
with a node is conserved [8]. If we let M and M̃ the consistent and lumped mass matrices,
respectively, we have M̃i j =(

∑
k Mik)�i j , where �i j is the Kronecker delta. Secondly, mass lumping

may be achieved by introducing reduced or inexact quadrature rules for the numerical evaluation
of integrals over a triangle K of Th , where the sampling points coincide with the nodes of the
element [9]. In the case of the P1 element, let (0,0), (1,0) and (0,1) denote, for example, the
vertices of triangle K . The use of the trapezoidal quadrature rule

∫
K f (x, y)dx dy≈ 1

6 ( f (0,0)+
f (1,0)+ f (0,1)) leads to a diagonal mass matrix since all but one shape function are zero at
a given node. Note that for the P1 element, the use of the first approach and the trapezoidal
quadrature rule technique lead essentially to the same result.

For the RT0 element, the elevation is constant per triangle and the corresponding mass matrix
is hence ‘naturally’ diagonal. The mass lumping technique for the velocity mass matrix requires
that triangles K of Th satisfy the Delaunay property, as shown in [24]. In this case, let e j be the
interior edge associated with the normal velocity component at triangle edge midpoint j . Following
[24], the non-zero element corresponding to line j of the lumped matrix is (cot	 j,1+cot	 j,2)/2,
where 	 j,1 and 	 j,2 are the angles opposite of e j .

The dispersion analysis is performed on Mesh 1, made up of biased right isosceles triangles for
both the gravity and Rossby waves, except for the RT0 pair. Mesh 2, corresponding to equilateral
triangles (with horizontal faces), is used for the RT0 scheme and the dispersion relations are
also obtained for the PNC

1 −P1 pair on Mesh 2 for comparison purposes. For the RT0 element,
we thus have 	 j,1=	 j,2=
/3. The mesh spacing h is defined as the triangle side length for
Mesh 2 and the shortest triangle side length for Mesh 1. Because nodal unknowns may be located
on different types of nodes: vertices, faces and barycentres, selected momentum and continuity
discrete equations for each type of nodes are retained. For example, three discrete momentum
equations are considered for the RT0 pair on the three possible types of faces, denoted by H
(horizontal), K and L (ordered counter-clockwise), of a triangle of Mesh 2, and two discrete
continuity equations are retained at the two possible types of barycentres corresponding to upward
(C1) and downward (C2) pointing triangles as shown in Figure 1(b). For simplicity, C1 and
C2 are also used on Mesh 1 to denote the lower left and upper right triangles, respectively, as
shown in Figure 1(a) for the P0−P1 pair. For the PNC

1 −P1 and P1 iso P2−P1 pairs three types
of faces, denoted by H (horizontal), V (vertical) and D (diagonal) are considered on Mesh 1,
but only one discrete continuity equation is retained at a typical vertex node (S) as shown in
Figure 1(c) and (d). For the P1 iso P2−P1 pair, one additional discrete momentum equation
needs to be considered at S (see Figure 1(d)). Further details are given in [12] for the PNC

1 −P1
pair. Note that for all pairs, the typical nodes belonging to the same set are distributed on a
regular grid.
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As for the continuum case, the dispersion relations for the discrete schemes are found through
a Fourier expansion. The discrete solutions corresponding to (u j ,v j ,� j )=(ũ, ṽ, �̃)ei(kx j+ly j ) are
sought at node j ( j=1,2,3, . . .), where (u j ,v j ,� j ) are the nodal unknowns that appear in the
selected discrete equations and (ũ, ṽ, �̃) are the amplitudes. The (x j , y j ) coordinates are expressed
in terms of a distance to a reference node. Substitution in the discrete equations leads to a
matrix system for the Fourier amplitudes. The dispersion relation is then obtained by setting the
determinant of the matrix system to zero. For Rossby waves and FE pairs having a piecewise-
linear continuous representation of surface elevation, a single equation is obtained for the Fourier
amplitude and the dispersion relation is computed in a straightforward manner. Because the velocity
field needs to be substituted from (19) in (20) for such waves, or from (21) in (22) if integration
by parts is performed, the dispersion relation is obtained after very long and tedious algebra, and
only the result is given here. Further details are found in [14].

As mentioned in [13], a realistic value of f would have little effect on the dispersion relations
of the P0−P1, PNC

1 −P1 and P1 iso P2−P1 pairs for inertia-gravity waves when �/h
1 (high
resolution). In the case �/h�1 (coarse resolution), the results are roughly preserved but at smaller
scales. Further, the mass lumping technique employed for the RT0 element does not apply to
the Coriolis operator. This is why we set f =0 in (15), and eventually in (17), and compute the
dispersion relations for pure gravity waves. The effect of the Coriolis factor is evaluated when
studying the discrete dispersion relations for the slow Rossby modes.

Let In be the n×n identity matrix, N an m×n matrix with m and n two positive integers,
N∗ =N T the conjugate transpose of N , and A=−i�I2. We now examine the calculation of the
dispersion relations for the four FE pairs that are considered in this study by using the mass
lumping technique for gravity and Rossby waves.

4.1. The P0−P1 pair

4.1.1. Gravity modes. On Mesh 1, the selected discrete equations are expressed in the matrix form⎛
⎜⎝
A 0

0 A −gB∗

HB −2i�

⎞
⎟⎠
⎛
⎜⎝
ũC1

ũC2

g̃S

⎞
⎟⎠=0 (23)

where B=1/h(b1 b2 −b1 −b2), with

b1=ei(k+l)h/3(1−e−ikh), b2=ei(k+l)h/3(1−e−ilh)

By setting the determinant of the 5×5 system matrix in (23) to zero, we obtain �1,2,3=0 and

�4,5=±
√
2
gH

h2
(2−coskh−cos lh) (24)

For infinitesimal mesh spacing the frequencies �4,5 coincide with the continuous solution obtained
from (6) in the limit as mesh spacing h→0 and we have �4,5=�G

AN+O(h2).

4.1.2. Rossby modes. We let

a1=2sinkh+sin lh+sin(k−l)h, a2=12(2−coskh−cos lh)
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and r ≡h/2�, and on Mesh 1 we obtain

�

�h
= −2a1

24r2+a2
(25)

For infinitesimal mesh spacing we have

�=�R
AN+O(h2) (26)

4.2. The RT0 pair

For that FE scheme, the dispersion relation is only computed on Mesh 2 for both gravity and
Rossby modes, and the mass lumping technique used in [24] is adopted.

4.2.1. Gravity modes. The discrete equations lead to the following system:⎛
⎜⎜⎝

−i�

√
3

3
I3 −gB∗

HB −i�

√
3

4
I2

⎞
⎟⎟⎠
(
J̃

g̃

)
=0 (27)

where J̃=( J̃H , J̃K , J̃L) and Jp is the velocity flux through the edge containing node p (here H,K
or L), with Jp = J̃pei(kxp+lyp). We also have g̃=(�̃C1

, �̃C2
),

B= 1

h

(−b1 b2 −b3

b1 −b2 b3

)

and

b1=ei
√
3lh/6, b2=ei(k+l/

√
3)h/4, b3=ei(k−l/

√
3)h/4

For a non-trivial solution to exist, the 5×5 determinant of the coefficient matrix above must vanish.
This condition implies �1=0 and four additional roots corresponding to gravity modes

�2,3=±2

√√√√√gH

h2

⎛
⎝3−

√√√√4cos
kh

2

(
cos

kh

2
+cos

√
3lh

2

)
+1

⎞
⎠ (28)

�4,5=±2

√√√√√gH

h2

⎛
⎝3+

√√√√4cos
kh

2

(
cos

kh

2
+cos

√
3lh

2

)
+1

⎞
⎠ (29)

For infinitesimal mesh spacing we have

�1=0, �2,3=�G
AN+O(h2), �4,5=±2

√
6

√
gH

h
+O(h)

Note that only �2,3 coincide with the continuous solution obtained from (6) in the limit as mesh
spacing h→0, while �4,5 presumably correspond to spurious modes from the RT0 discretization
scheme.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:767–790
DOI: 10.1002/fld



776 D. Y. LE ROUX ET AL.

4.2.2. Rossby modes. We let

a1=sin
kh

2
, a2=2cos

kh

2
+cos

√
3lh

2

a3=sin

√
3lh

2
, a4=1+4cos

kh

2

(
cos

kh

2
+cos

√
3lh

2

)

and obtain

�1,2

�h
=

a1

(
a2±

√
(r2+3)2−a23

)
2(a4−(r2+3)2)

(30)

For infinitesimal mesh spacing we have

�1=�R
AN+O(h2), �2= 1

24�kh
2+O(h4)

4.3. The PNC
1 −P1 pair

4.3.1. Gravity modes. On Mesh 1, the selected discrete equations are expressed in the matrix form⎛
⎜⎜⎜⎜⎝
A 0 0

0 A 0 −gB∗

0 0 A

HB −3i�

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
ũH

ũV

ũD

g̃S

⎞
⎟⎟⎟⎟⎠=0 (31)

where B=1/h(b1 b2 b3 b4 b5 b6), with

b1=2isin
kh

2
, b2=2isin

lh

2
cos

(k−l)h

2
, b3=2isin

kh

2
cos

(k−l)h

2

b4=2isin
lh

2
, b5=2isin

kh

2
cos

lh

2
, b6=2isin

lh

2
cos

kh

2

Vanishing the 7×7 determinant in the left-hand side of (31) leads to �1,2,3,4,5=0 and

�6,7=±
√
4

3

gH

h2

(
cos2

(k−l)h

2

(
sin2

kh

2
+sin2

lh

2

)
+2

(
1−cos2

kh

2
cos2

lh

2

))
(32)

For infinitesimal mesh spacing we have �6,7=�G
AN+O(h2).

On Mesh 2 we let

b1= i√
3
sin

kh

2
, b3= i√

3
sin

kh

2
cos

(k+√
3l)h

4

b4= i

6

(
3sin

(−k+√
3l)h

4
+sin

(3k+√
3l)h

4

)
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b2= i

3
sin

√
3lh

2
, b5= i√

3
sin

kh

2
cos

(k−√
3l)h

4

b6= i

6

(
3sin

(k+√
3l)h

4
+sin

(−3k+√
3l)h

4

)

and we obtain

�6,7=±2

√
gH

h

√√√√−
6∑
j=1

b2j (33)

with �6,7=�G
AN+O(h2) for infinitesimal mesh spacing.

4.3.2. Rossby modes. We let

a1=2sinkh+sin lh+sin(k−l)h

a2=8

(
cos2

(k−l)h

2

(
sin2

kh

2
+sin2

lh

2

)
+2

(
1−cos2

kh

2
cos2

lh

2

))

and obtain on Mesh 1

�

�h
= −2a1

24r2+a2
(34)

For infinitesimal mesh spacing we have

�=�R
AN+O(h2) (35)

On Mesh 2, made up of equilateral triangles, Equations (34) and (35) are obtained but with

a1=2sinkh+2sin
kh

2
cos

√
3lh

2

a2=16−4coskh− 4

3
cos

√
3lh−8cos

kh

2
cos

√
3lh

2
− 8

3
cos

3kh

2
cos

√
3lh

2

Note that the superconvergence (O(h4)) obtained in [13, 14] for both the gravity and Rossby waves
is lost when the mass matrix is lumped.

4.4. The P1 iso P2−P1 pair

4.4.1. Gravity modes. On Mesh 1, the selected discrete equations lead to⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A 0 0 0

0 A 0 0
−gB∗

0 0 A 0

0 0 0 A

HB −4i�

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

ũS
ũH

ũV
ũD

�̃S

⎞
⎟⎟⎟⎟⎟⎟⎠

=0 (36)
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where B=1/h(b1 b2 b3 b4 b5 b6 b7 b8), with

b1= i

3
(2sinkh+sin lh+sin(k−l)h), b5= i

(
sin

lh

2
+sin

(2k−l)h

2

)

b2= i

3
(2sin lh+sinkh−sin(k−l)h), b6=2isin

lh

2

b3=2isin
kh

2
, b7= i

(
sin

(k−l)h

2
+sin

(k+l)h

2

)

b4= i

(
sin

kh

2
−sin

(k−2l)h

2

)
, b8= i

(
sin

(k+l)h

2
−sin

(k−l)h

2

)

The 9×9 determinant of the coefficient matrix above must vanish to obtain a non-trivial solution,
and this leads to �1,2,3,4,5,6,7=0 and

�8,9=±
√
gH

2h

√√√√−
8∑
j=1

b2j (37)

For infinitesimal mesh spacing we have �8,9=�G
AN+O(h2).

4.4.2. Rossby modes. We let

a1 = 338sinkh+166sin lh+163sin(k−l)h

+2sin2kh+sin2lh+sin2(k−l)h+18sin(2k−l)h+15sin(k+l)h

a2 = 1248−488(coskh+cos lh)+208(cos(k−l)h−cos(k+l)h)

−40cos2kh−40cos2lh−88cos(2k−l)h−88cos(k−2l)h−16cos2(k−l)h

and on Mesh 1 we obtain

�

�h
= −a1

2304r2+a2
(38)

which reduces to

�= 31

32

−�k

k2+l2+�−2
+O(h2) (39)

for infinitesimal mesh spacing.

5. ANALYSIS OF THE DISPERSION RELATIONS

5.1. Gravity wave limit

We now analyse the computed frequencies, denoted by �G
CP, corresponding to the discrete gravity

modes obtained for the four FE pairs described in Section 4. The expressions for �G
CP are obtained
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OD2 OX
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Figure 2. Definition of the selected axes OX , OY , OD1 and OD2 on Mesh 1
(left), and OE and OT on Mesh 2 (right).

from (24), (28), (32)–(33) and (37) for the P0−P1, RT0, PNC
1 −P1 and P1 iso P2−P1 pairs,

respectively. Let �G be the phase speed ratio of the computed phase speed to the analytical one, with

�G≡ |�G
CP|

|�G
AN| = |�G

CP|√
gH(k2+l2)

(40)

We show �G as a surface function depending on kh and lh, and along selected axes, in Figures 3
and 4 for the FE schemes examined here. Note that we should have �G=1 in the absence of
numerical dispersion. The selected axes OX , OY , OD1 and OD2 on Mesh 1, and OE and OT
on Mesh 2 are shown in Figure 2. As in [10, 13], the values of kh and lh vary over the complete
spectral domain [−
,
]. However, the phase speed ratio along the selected axes OX , OY , OD1,
OD2 and OE is only plotted on [0,
] and the solution is then deduced on [−
,0] by symmetry
through the origin. Along the OT axis, �G is plotted on [0,
/�], where �=√

3/2.
The phase speed ratio is plotted in Figure 3 for the P0−P1, PNC

1 −P1 and P1 iso P2−P1 pairs
on Mesh 1, and in Figure 4 for the RT0 and PNC

1 −P1 pairs on Mesh 2. Along the selected axes,
�G is shown with (ML) and without (NML) the use of a mass lumping technique.

In Figure 3, the effect of the mass lumping technique is to damp all FE frequencies. The damping
is more severe in the OD2 direction although �G�1 in such a direction without lumping. We
obtain �G�1 for all values of kh and lh. Hence, the waves are travelling slower than expected,
and this is particularly true for large values of |kh| and |lh|. The damping effect is comparable for
the PNC

1 −P1 and P1 iso P2−P1 pairs, with slightly better results for the P0−P1 pair.
In Figure 4 on Mesh 2, the results for the PNC

1 −P1 pair are close to those obtained in Mesh 1
by taking into account that along the OT axis, �G is plotted on [0,
/�]. Much better results are
observed for the RT0 pair, particularly along the OE and OT directions where the NML and NL
curves are in close agreement, even for large wave numbers.

5.2. Rossby modes

The computed frequencies corresponding to the discrete Rossby modes obtained in Section 4 for
the four FE pairs examined here are now analysed. The expression for �R

CP is obtained from (25),
(30), (34) and (38) for the P0−P1, RT0, PNC

1 −P1 and P1 iso P2−P1 pairs, respectively. We
denote by �R the ratio of the computed frequency to the analytical one and �R

AN is rewritten
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Figure 3. The phase speed ratio (�G) is plotted as a surface function and along selected axes (OX , OY ,
OD1 and OD2) on Mesh 1 for the (a) P0−P1, (b) PNC

1 −P1 and (c) P1 iso P2−P1 pairs. Along the
selected axes, �G is plotted with (ML) and without (NML) the use of mass lumping technique.

from (14) as

�R≡ �R
CP

�R
AN

,
�R
AN

�h
= −kh

4r2+(kh)2+(lh)2
(41)

Again we should have �R=1 in the absence of numerical dispersion.
We show �R by using contour levels depending on kh and lh in Figures 5 and 6 for the FE

schemes previously examined. Following [25], three values of r are used: r2=0.1, 1 and 10,
corresponding to meshes ranging from fine (r2=0.1) to coarse (r2=10) resolution. The parameter
r2 measures the relative importance of the terms in the denominator of (25), (30), (34) and (38)
when the wave scale is small.
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Figure 4. As for Figure 3 but for the (a) RT0 and (b) PNC
1 −P1 pairs on Mesh 2.

In Figure 5, the analytical and FE computed solutions agree well (�R�1) for small-to-medium
range wave numbers. Note that the region where ��1 is larger for the PNC

1 −P1 and P1 iso P2−P1
pairs than for the P0−P1 pair for r2=0.1. However, for kh=0 and lh=0 we obtained the values
�R=0.969 from (39) for the P1 iso P2−P1 pair, and thus the waves travel slower than expected
for this pair. At the vicinity of (kh=−
, lh=
/2) and (kh=
, lh=−
/2) we have �R<0 for all
pairs, whatever the value of r2, and the waves will thus decelerate.

In Figure 6 on Mesh 2, much better results are obtained for the RT0 pair since �R is closer to 1
over the greater part of the spectral domain. However, at the vicinity of kh=0 and lh=±
/�,
we have �R>1 and the waves will thus accelerate, particularly for small values of r2. For the
PNC
1 −P1 pair the results are similar to those obtained in Figure 5, except that the region where

the waves decelerate is now located at the four corners of the spectral domain.
The two discrete frequencies obtained in (30) for the RT0 scheme are plotted in Figure 7 and

compared with the continuous solution �R
AN. The mode �2 in (30) is spurious whereas the mode

�1 is well represented. Note that the origin of �2 is found in the coupling between the discrete
momentum and continuity equations in SW models, and is not due to the mass lumping technique.
Further, the impact of �2 on the numerical solution is still unclear.

6. NUMERICAL RESULTS

The results of three numerical tests examining the propagation and dispersion of fast gravity and
slow Rossby waves are now presented for the four FE pairs employed in this paper. In addition to
Meshes 1 and 2, we also consider Mesh 3, an unstructured mesh with smoothing.
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Figure 5. Contour levels of �R for the (a) P0−P1, (b) PNC
1 −P1 and (c) P1 iso P2−P1 on

Mesh 1. Three values of r are used, r2=0.1, 1 and 10, corresponding to meshes ranging from fine
(r2=0.1) to coarse (r2=10) resolution.

6.1. Gravity waves

The domain is an idealized Lx ×Ly rectangular basin discretized using h=40 km. We let Lx =
4800km, Ly =280km, and hence the mesh has 120 and 7 elements in the x- and y-directions,
respectively. The origin of the domain is chosen to be the bottom left corner. The initial solution

ū=0 (42)

�̄=cos(kx) (43)

satisfies the no-normal flow boundary condition at lateral boundaries and periodic conditions are
applied along the eastern and western boundaries.

The wave number k considered in the sequel (the wave moves in the x-direction) is such that
k=2

/Lx , where 
 is defined as the length Lx over the wavelength. In the following we evaluate
k for 
=2,3,4,5,6,8,10,12,15,20,24,30,40,60. At each time step the elevation is computed at
the centre of the domain (Lx/2, Ly/2) and at the end of the simulation the time evolution of � at
this point is obtained. By estimating the distance between the two nearest maxima the period T
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Figure 6. As for Figure 5 but for the (a) RT0 and (b) PNC
1 −P1 pairs on Mesh 2.

and the frequency �=2
/T are then deduced for each value of k. The choices g=10ms−2 and
H =1000m result in a phase speed for gravity waves of 100ms−1. The time step is set to 20 s
and the simulation is carried on for 5000 time steps. A Crank–Nicolson scheme is used for the
gradient and divergence operators.

In Figure 8, the effect of mass lumping appears to be the same for all FE pairs on both Meshes 1
and 3 (the RT0 element is not included here). It leads to a reduction in the discrete frequency for
small wavelengths. As a result, the modes with a wavelength smaller than 4h are slowed down by
the numerical scheme whereas the others remain mostly unaffected. For the RT0 pair, the curves
for the consistent (NML) and lumped (ML) schemes are in close agreement in Figure 9, even for
large wave numbers. The PNC

1 −P1 pair is found to give similar results and damping on Meshes 1
and 2. Note that the discrete analytical (�G

CP) and numerically simulated dispersion relations (when
available) nearly coincide for all pairs.

6.2. Rossby waves

The results of two numerical tests are presented. The first experiment examines the propagation and
dispersion of slow propagating Rossby modes in the case of the evolution of a typical anticyclonic
eddy at midlatitudes. In the second test, the experiment conducted in Section 6.1 for gravity waves
is performed for Rossby waves.

6.2.1. Anticyclonic eddy propagation. The domain of interest is an idealized 2000km×1200km
rectangular basin and h is set to 20 km. Equations (1)–(2) are solved subject to the no-normal flow
boundary condition ū·n=0. A Gaussian distribution of �̄, centred at the origin of the domain, is
prescribed at initial time, and the initial symmetric anticyclonic velocity field is in geostrophic
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Figure 7. The frequency for the Rossby modes is plotted as a surface function for the (a) continuous
case (�R

AN) and the two discrete frequencies obtained in (30) for the RT0 scheme (b) �1 and (c)
�2. Three values of r are used, r2=0.1, 1 and 10, corresponding to meshes ranging from fine

(r2=0.1) to coarse (r2=10) resolution.

balance: f k×ū=−g∇�̄, and thus

�̄= Ae−(x2+y2)/B2
(44)

ū=2A
g

f0+�y

y

B2
e−(x2+y2)/B2

(45)

v̄=−2A
g

f0+�y

x

B2
e−(x2+y2)/B2

(46)

By setting A=0.95m and, for example, B=130km, the initial maximum surface azimuthal velocity
is 1ms−1. The constant depth H =1.631m results in a phase speed for gravity waves of approx-
imately 4ms−1. Such a small equivalent depth is pertinent for the adjustment under gravity of
a density-stratified fluid [17]. The �-plane approximation, f = f0+�y, is used, where f0 and
� are evaluated at 25◦N ( f0=6.1635×10−5 s−1 and �=2.0746×10−11m−1 s−1). The radius of
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Figure 8. Continuous analytical (�G
AN, dotted line), discrete analytical (�G

CP, solid and dashed lines
for NML and ML, respectively, when available) and numerically simulated (◦ and × for NML and
ML, respectively) dispersion relations for gravity waves and for the (a) P0−P1, (b) PNC

1 −P1 and
(c) P1 iso P2−P1 pairs on Meshes 1 and 3.

deformation at midbasin is thus �≡√
gH/ f0≈65km. The time step is 1800 s and Equations

(1)–(2) are discretized in time using the Crank–Nicholson scheme.
After the initial condition adjusts to the �-plane balance of the model, the anticyclonic vortex

evolves purely westward. After few weeks of simulation the surface elevation and flow speed field
are close to the results obtained in [14] without the use of the mass lumping technique.

More quantitative results are obtained in Table I by considering the number of time steps it takes
for the initial surface elevation to propagate over 100 km. We still have A=0.95 and the parameter
B is chosen to be B=60,80,100 and 120 km, so that the e-folding radius of the initial Gaussian
(the distance from the origin for which �̄=e−1) is resolved by 3,4,5 and 6 nodes, respectively,
in the x-direction. The results are obtained on Meshes 1 and 2, without (NML) and with (ML)
the use of the mass lumping technique. For each FE pair the number of time steps is indicated in
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Figure 9. As for Figure 8 but on Mesh 2 for the RT0 and PNC
1 −P1 pairs.

Table I. The number of time steps it takes for the initial surface elevation to propagate
over 100 km on Meshes 1 and 2.

B=60km B=80km B=100km B=120km

FE Mesh NML ML NML ML NML ML NML ML

P0−P1 1 3298 +47 2320 +24 1810 +18 1497 +12
2 3245 +34 2285 +20 1792 +12 1487 +9

RT0 2 3191 +1 2287 +3 1810 +1 1504 −1

PNC
1 −P1 1 3315 +51 2310 +23 1803 +13 1492 +12

2 3252 +41 2290 +18 1791 +15 1487 +8

P1 iso P2−P1 1 3283 +133 2303 +43 1799 +24 1490 +19
2 3227 +78 2275 +33 1782 +22 1479 +14

For each FE pair and several values of B, the number of time steps is indicated in column NML (no mass
lumping), whereas in column ML (mass lumping) the positive or negative number needs to be added to the
NML result to obtain the number of time steps for the ML case.

column NML, whereas in column ML the positive or negative number needs to be added to the
NML result to obtain the number of time steps for the ML case. The numbers in column ML thus
represent the delay (if positive) or advance (if negative) expressed in time steps of the lumped
solution compared with the consistent one (not lumped).

For the RT0 scheme, the mass lumping technique has practically no effect on the propagation
speed of the eddy, whatever the choice of B. For the three other pairs, the ML solution progresses
slower than the NML one on both meshes, and the delay increases with decreasing values of B.
The delay is significant for the P1 iso P2−P1 pair, particularly for small B, and it may be regarded
as a consequence of (39). Common to the P0−P1, PNC

1 −P1 and P1 iso P2−P1 pairs is a smaller
delay on Mesh 2 than on Mesh 1.

6.2.2. Propagation of slow modes in a canal. The test performed in Section 6.1 is reproduced
here in the context of the propagation of slow Rossby modes. The experiment is unchanged except
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that the initial solution

ū=−gl

f
cos(kx)cos(ly) (47)

v̄=−gk

f
sin(kx)sin(ly) (48)

�̄=cos(kx)sin(ly) (49)

where l=
/Ly is now in geostrophic balance and still satisfies the no-normal flow boundary
condition at lateral boundaries. Further, two values of Ly are considered. For the P0−P1, RT0

and PNC
1 −P1 pairs, Ly is set to 280 km as this value was found sufficient in [14, 26] to well

approximate the Rossby waves (without the mass lumping technique). This is due to the small
smallest representable vortices (SRV) structure found for the three pairs in [26], where the SRV
are defined as the elements of the discrete Coriolis, divergence and gradient matrix kernels with
minimum support. In [26], the size and structure of the SRV are compared for several FE pairs
on local mesh patches. It is shown that the P0−P1, RT0 and PNC

1 −P1 pairs can characterize
smaller SRV structures efficiently and with less oscillatory behaviour than the P1 iso P2−P1 pair,
for example. For the P1 iso P2−P1 pair, larger SRV are found in [26], and hence a larger Ly
was needed (840 km) to compute the slow modes. This is why Ly =840km is employed in the
present experiment for the last pair. Periodic conditions are again applied along the eastern and
western boundaries. The �-plane approximation, f = f0+�y, is used where f0=10−4 s−1 and
�=10−11m−1 s−1. By setting g=0.1ms−2 and H =1000m results in a phase speed for gravity
waves of 10ms−1. The radius of deformation at midbasin is thus �=100km.

The wave number k is again such that k=2

/Lx (the wave still moves in the x-direction) with

=2,3,4,5,6,8,10,12,15,20,24,30,40,60. The time step is set to 2×104 s and the duration of
the simulation is 104 time steps. A Crank–Nicolson scheme is used for the Coriolis, gradient and
divergence operators.

In Figures 10–12 close agreement is observed on Meshes 1 and 2 (when the results are available)
between the consistent and lumped schemes for all pairs. The numerical results also closely match
with the analytical dispersion relations obtained in the discrete case. On Mesh 3, the results for the
P0−P1, PNC

1 −P1 and RT0 (shown in [26, Figure 5.5]) pairs are quite good. However, significant
errors are observed in Figure 12 for the P1 iso P2−P1 pair on such a mesh. This may be due to
the absence of SRV for this pair on unstructured meshes as shown in [26], and both the consistent
and lumped frequencies are not accurately computed.

7. CONCLUDING REMARKS

To our knowledge, the preceding analysis appears to be the first study of the effect of mass lumping
on the dispersion relation for FE solutions of the 2-D SW equations based on the examination of
a variety of mixed FE pairs. Four pairs are examined, and for each pair the lumped frequency is
obtained and analysed for both the gravity and Rossby waves. The dispersion properties are also
compared analytically and graphically with the continuous case. Three numerical tests, concerning
the propagation of gravity and Rossby waves, are performed.

It is found that the FE schemes examined here are mostly unaffected by mass lumping as far
as the propagation of gravity waves is concerned. Only the modes with a wavelength smaller than
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Figure 10. Continuous analytical (�R
AN, dotted line), discrete analytical (�R

CP, solid and dashed lines for
NML and ML, respectively, when available) and numerically simulated (◦ and × for NML and ML,
respectively) dispersion relations for Rossby waves and for the (a) P0−P1 and (b) PNC

1 −P1 pairs on
Meshes 1 and 3, with Ly =280km.
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Figure 11. As for Figure 10 but for the RT0 and PNC
1 −P1 pairs on Mesh 2 with Ly =280km.

4h are slowed down by the numerical schemes (with the exception of the RT0 pair) whereas the
others remain mostly unaffected.

However, the situation is different for the propagation of Rossby waves. For all pairs, except the
RT0 one, the lumped solution propagates slower than the consistent one, and the delay increases
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Figure 12. As for Figure 10 but for the P1 iso P2−P1 pair with Ly =840km.

as the mesh gets coarser. The P1 iso P2−P1 pair is mostly affected by the delay. On the other
hand, the dispersion errors due to mass lumping remain small for the P0−P1, RT0 and PNC

1 −P1
pairs, with the exception of the smallest wavelength, on both regular and unstructured meshes.
Significant errors are observed for the P1 iso P2−P1 pair on the latter mesh but this problem is
not primarily due to the lumping technique. Finally, we note that the superconvergence obtained
for the PNC

1 −P1 frequency for both gravity and Rossby waves with the consistent solution is lost
when the mass matrix is lumped.

It thus appears that the P0−P1, RT0 and PNC
1 −P1 pairs can be advantageously lumped in

SW simulations without sacrificing the model’s accuracy and dispersion properties, for sufficiently
fine resolution. The resulting model would then combine the advantages of both fast and simple
finite-difference schemes, and unstructured and flexible FE ones.
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Peraire J, Zienkiewicz OC (eds). Pineridge Press, 1993; 1001–1009.

2. Carey GF (ed.). Finite Element Modeling of Environmental Problems. Wiley: U.K., 1995.
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